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Abstract 

A major role after the completion of research area is drilling the graph sector and extortion of 

the invisible pattern from the graph is a difficult task and it should also provide shovel 

considerable patterns. It is a competing task and the glimpse of this paper focuses on 

uncovering useful patterns from the data of the graph with the help of novel algorithm which 

is named as " Recurrent Sub-Graph Drilling of the Invisible items - RSDI algorithm". It 

provoke easy mechanism to conceal the devastation of prolong running time and memory 

portion. The graphs are probably transferred into textual transformation datum therefore except 

the invisible items others are taken into and this is passed into binary representations to explore 

the recurrent sub-graphs. The final outcome is practically valued by the process of the art 

prevailing algorithms to exemplify the acquisition of the proposed algorithm.    

 

Keyword: Graph mining – sub graph mining – data mining – binary representations - drilling 

– uncovering 

 

INTRODUCTION 

The avant-garde in graph mining field is frequent sub-graph mining (FSM). The ultimate target 

of FSM, to identify the repeated sub-graphs in the provided graph datum where the event 

organized is exceeded beyond the limited esteem provided by the user to find out the sub 

graphs.   

The basic format of FSM is to module candidates (Sub-Graph candidates) with the 

depth or breadth as former techniques and by implying it at the helping area as stated by the 

user [4]. The Extension of the FSM is sighed as two important views that should be faced with 

efficiency   



Webology (ISSN: 1735-188X) 

Volume 18, Number 6, 2021 

2                                                                http://www.webology.org 
 

(I) Identifying the overall candidates repeatedly in the Sub-Graph beyond the 

redundancy. 

(II) Leave out the repeated check of the modules sub-graphs to avoid the time 

complexity.   

          Therefore, the safety should be measured to avoid the generation of copy or superfluous 

candidates. Getting back to tally checking might require a redundant relationship of candidate 

Sub-Graphs in the details of the data and FSM which is taken as the expansion of Frequent 

Item set Mining (FIM) that advances with regards to ASM[4]. Various scientists mentioned 

results for addressing the problems recognized with FSM and final coda property concludes 

with item set which is matched up with candidate sub-graphs age. The glimpse of this paper 

accompanies various best FSM related algorithms utilized by numerous strategies in 

accordance with time complexity, memory complexity and some space related problems too.   

The recurrent sub-graph mining can be categorized into two fundamental categories, namely  

1. Mining with graph collections and finding out the recurrent sub-graphs.  

2. Mining with one large graph and to find out the sub-graphs. 

      Considering a graph datum set Gd = { G1, G2, G3,…. GN} I e..,. G1, G2, G3 where the 

collection of different graphs jotted in the datum set, the lessened support count threshold σ (0 

<σ≤ 1). Therefore the support of M, 

Min Sup (M) = | δ(M) | / N 

In which | δ(M) |, cardinality of δ(M) and N, overall amount of graph that presents the 

graph dataset. Thus, M is recurrent, if Sup(M) ≥σ. The idea is simpler when the superset is 

recurrent, therefore all the subsets are also recurrent.  

 

PROPOSED TASK:  

The proposed algorithmic task, a unique large datum and the model datum is shown in the 

figure 1. Formerly the graph traversed from up to down and the vertices, nodes and edges are 

identified to transform the graphical datum into textual transformation data. The transformed 

transaction data is exclaimed with the invisible item alone in each and every row. The invisible 

datum indicates that converted binary presentation and therefore te specified candidates are 

joined using easy binary operation and the user as well provided with low support count 

threshold value. 

 

 

Figure 1: Single graph dataset 
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Figure 2: Finding the edges 

 

Therefore, the numbers of edges are 4 as shown in the figure 2. Simultaneously for each and 

every node the edges are identified. 

 

PROCEDURE Convert Graph To Text( 

Graph G) 

Input: Single Graph data G 

Output: Textual Labels with number of 

edges present in them 

1. Load the single Graph dataset 

2. Initially Scan the graph dataset to 

find the number of levels  

3. Detect the vertexes present in the 

graph 

4. Initialize edge =1 // to find the 

number of edges 

5. ∀ Vertex  V in  Graph G  

       Discover the edges connected 

with the v 
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       Fetch the labels of the node  

       Increment edge = edge + 1 

       Store the labels  and edge  RES 

6. End For 

7. Return RES 

 

 

Figure 3: Pseudo code to convert graph to text 

The graph which is transformed into the textual data is figured out in the table 1 and 

therefore the table that has specific items are identified and once after they are customized the 

lessened support counts the invisible item represented which is processed below in the 

following section.  

 

Table 1: Converted graph to text 

 

No

de 

item

s 

Edg

es 

Nod

e 

Items edges 

N1 E, F, 

G, 

H, I 

4 N11 D, B 1 

N2 F, E, 

A 

2 N12 H, E, 

C 

2 

N3 A, F, 

B, C, 

D 

4 N13 C, H, 

A, B, 

D 

4 

N4 B, A 1 N14 A, C 1 

N5 C, A 1 N15 B, C 1 

N6 D, A 1 N16 D, C 1 

N7 G, 

C, B 

2 N17 I, E, D 2 

N8 B, G, 

A, C, 

D 

4 N18 D, I, 

A, B, 

C 

4 

N9 A, B 1 N19 A, D 1 

N1

0 

C, B 1 N20 B, D 1 

 

The ultimate method to figure out the specific item is shown in the below figure 4 and 

then the pseudo code has been showed ,   

 

Figure 4: Pseudo code to find the distinct items 
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The support count is provided by the user is 4 and the distinct items are found to be {A, 

B , C, D, E, F, G, H, I, } where the item count of F, G, H, I are found to be 3 and as it is lower 

than the user defined support, those items are pruned. The pruned transactional data 

representation is shown in the following table 2 and from this table the missing items are 

discovered. 

 

Table 2: Pruned transactional data 

 

Node items Node Items 

N1 E N11 D, B 

N2 E, A N12 E, C 

N3 A, B, C, D N13 C,  A, B, 

D 

N4 B, A N14 A, C 

N5 C, A N15 B, C 

N6 D, A N16 D, C 

N7 C, B N17 E, D 

N8 B,  A, C, D N18 D, A, B, C 

N9 A, B N19 A, D 

N10 C, B N20 B, D 

 

Thus, the items are invisible in each node are identified and represented as shown in 

the following table 3. 

 

Table 3: Missing item transactional data 

 

NOD

E 

ITEMS NOD

E 

ITEMS 

N1 A,B,C,

D 

N11 A,C,E 

N2 B,C,D N12 A,B,D 

N3 E N13 E 

N4 C,D,E N14 B,D,E 

N5 B,D,E N15 A,D,E 

N6 B,C,E N16 A,B,E 

N7 A,D,E N17 A,B,C 

N8 E N18 E 

N9 C,D,E N19 B,C,E 

N10 A,D,E N20 A, C,E 

 

The table 3 is represented and when the item is presented in the node then it will be 

marked as one and elsewhere marked as zero. Therefore, the pseudo code to perform this task 

is proven in the figure 5. 
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PROCEDURE Binary Value(Missing Item 

M) 

Input: Missing Item M 

Output: Bit vector representation of data 

1. Load missing item Data set M and 

scan it. 

2. ∀ Row Ro∈M  begin 

3. ∀ Item It  ∈Ro  begin 

4. If [ It present in Ro] begin 

5. Mark as “1” in out 

6. Else  

7. Mark as “0” in out 

8. Close IF 

9. Close For 

10. Close For 

11. Return out 

 

 

Figure 5: Pseudo code to represent the missing item dataset in binary format 

The recurrent graphs are identified as computing the probable candidate and thus it start 

from the 2 item set value A and B. 

A = 10000010011100111001 

B = 11001100000101011010 |OR 

AB  =11 0 0 1 1 1 0 0 1 1 1 0 1 1 1 1 0 1 1 

Then , count the number of zeroes and from the result {AB}=11001110011101111011, 

that the number of zero is 6 and the user defined support provided is 4. The count of AB is 

greater than the lessened support and therefore the graph is identified to be frequent. Then, the 

later level 3-itemset is found using this {AB} | {C} 

AB  =  1 1 0 0 1 1 1 0 0 1 1 1 0 1 1 1 1 0 1 1 

  C   =   1 1 0 1 1 1 0 0 1 0 1 0 0 0 0 0 1 0 1 1 | OR 

ABC = 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1  

The number of zeroes is identified to be 3 and it is smaller in amount than the minimum 

support count and henceforth it is irrecurrent and the later level 4-itemset gets ignored. The 

final recurrent sub-graph is shown in the following table 5. 

 

Table 5: Final result 
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PROPOSED ALGORITHM 

 

ALGORITHM FSMM 

Input: Graph Database G , min_sup 

Output: Frequent Items 

1. Load the graph dataset 

2. Convert graph to test Text 

Table 

3. Load the transaction table 

Text table 

4. Find the missing Value  Tm 

5. Bin=Binary Value(dataset 

Tm) 

6. Find the level wise calculation 

7. Count the number of zeroes 

8. If [Count >= min_sup] 

9. Store the item set in RES 

10. Calculate the next level item 

set 

11. Else 

12. Prune the Item set 

13. Return RES 

 

Figure 6: Pseudo code of the proposed algorithm FSMM 

 

EXPERIMENTAL EVALUATION 

The proposed RSDI algorithm gets executed on the system comprising of 2.66 GHz I7 

processor machine and a 4 GB memory running on Microsoft 10 ultimate operating system. 

Therefore, the algorithm is written in java based SPMF data mining toolkit. The RSDI 
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algorithm compared with the existing algorithms like FSG [1], GSPAN [2], GASTON [3] and 

the results showcased proves the efficient working of the RSDI algorithm. 

Kuramochi and Karypis [1] designed the FSG algorithms for mining all recurrent sub-

graphs from graph datasets, with a level-wise approach as on the Apriori concepts and thus the 

algorithm had been the first one compared with the proposed RSDI.  

The writer Yan and Han [2] designed GSPAN, that employed depth- first search, 

framed on a pattern growth principle same as the FP-growth algorithm and herewith the 

candidate has generated but it includes a heavy memory. 

The writer Nijssen et al. Designed an efficient recurrent sub-graph mining tool, called 

Gaston, it identifies the recurrent substructure that are given in a number of phases of 

developing complexity [3]. 

The synthetic datum generator initially created a set of candidate graphs (the total 

number is controlled by L) and user specified size (I). Thus, the parameters produced in the 

synthetic graph generator are given in the table 6. 

 

Table 6: Parameter used in synthetic dataset 

 

Parameters Description of 

parameter 

D Total number of graph 

L Total number of 

probable frequent sub-

graph present 

T Number of Edges 

V Label count 

I Edge size 

E Edge label count 

 

The datum set generated by the following table and three datum sets are generated and used for 

experimental comparison are in respect to the runtime and memory consumption. 

 

Table 7: Dataset used 

 

Dataset 

generated 

Numbe

r of 

Sequen

ces 

Avg.  

edge

s 

Potent

ial 

freq 

patter

ns 
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D15kT30L

200I11V4E

4 

10000 35 250 

D25kT40L

350I16V4E

4 

20000 45 375 

D120kT50

L500I20V4

E4 

100000 55 550 

The formulated RSDI algorithm and some other prolonging algorithms are executed by the 

synthetic datum sets as given in the table 7. Thus the results formed after the existence in 

respect to the due time consumption is marked in the table 8.   

Table 8: Run time comparison on D10kT30L200I11V4E4 (Small) dataset 

RUNTIME (m SEC) 

Dataset - D15kT30L200I11V4E4 

Algor

ithm 

User defined Min_Sup 

values 

10 10

0 

100

0 

200

0 

250

0 

FSG 1244 94

7 

831 787 659 

GSP

AN 

1219 89

4 

726 678 646 

GAS

TON 

1079 85

9 

717 626 538 

FSM

M 

978 72

2 

665 556 437 

Thus, the experimental value brought out in the table 8 clearly defines that the proposed RSDI 

algorithms work on with small synthetic datum set. The GATSON algorithm relatively mirrors 

the performance of RSDI when a bigger support count is given but in case of the other two 

algorithms auctioned worsen and has taken a longer time to exit.   

 

 

 

 

 

 

 

 

 



Webology (ISSN: 1735-188X) 

Volume 18, Number 6, 2021 

10                                                                http://www.webology.org 
 

Figure 7: Graph related to runtime comparison 

 

Table 9: Memory consumption comparison 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The next comparison, forwarded with memory footprint and therefore the following 

table 9 proves the comparison of memory consumption. 

 

The table 9 keenly figures out that the proposed RSDI algorithm which outscores the 

other three algorithms with a better margin in respect to the memory consumption. Therefore 

the minimum support value is diagnosed below 5, FSG becomes insufficient due to memory 

error and then the minimum support value lessened alive 3000 almost all the algorithms acted 

simultaneously.  

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Graph related to memory consumption 

 

CONCLUSION 

MEMORY USAGE (MB) 

Dataset - 

D15kT30L200I11V4E4 

Algo

rith

m 

User defined Min_Sup 

value 

10 10

0 

10

00 

20

00 

250

0 

FSG 32

3 

10

9 

78 58 35 

GSP

AN 

27

6 

93 66` 42 29 

GAS

TON 

22

4 

79 57 37 27 

FSM

M 

16

8 

66 45 29 21 
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The proposed algorithm RSDI proved that this papers glimpse and its experimental results are 

innovative keenly band therefore the RSDI overwhelmed the other algorithms by large amount 

of force in accordance with the runtime and memory consumption. This proposed algorithm 

keenly saves a huge amount of runtime and memory when it is executed on a large graph that 

datum sets are proved as asset to the research area.  
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