
Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

468 http://www.webology.org

Recurrent Sub-Graph Drilling Of The Invisible

Items

Dr. B. Senthil Kumaran

Assistant Professor, PG & Research Department of Computer Science,

Jairams Arts & Science College, Karur -03. (Affiliated to Bharathidasan University,

Trichirappalli-24)

Abstract

A major role after the completion of research area is drilling the graph sector and extortion of

the invisible pattern from the graph is a difficult task and it should also provide shovel

considerable patterns. It is a competing task and the glimpse of this paper focuses on

uncovering useful patterns from the data of the graph with the help of novel algorithm which

is named as " Recurrent Sub-Graph Drilling of the Invisible items - RSDI algorithm". It

provoke easy mechanism to conceal the devastation of prolong running time and memory

portion. The graphs are probably transferred into textual transformation datum therefore except

the invisible items others are taken into and this is passed into binary representations to explore

the recurrent sub-graphs. The final outcome is practically valued by the process of the art

prevailing algorithms to exemplify the acquisition of the proposed algorithm.

Keyword: Graph mining – sub graph mining – data mining – binary representations - drilling

– uncovering

INTRODUCTION

The avant-garde in graph mining field is frequent sub-graph mining (FSM). The ultimate target

of FSM, to identify the repeated sub-graphs in the provided graph datum where the event

organized is exceeded beyond the limited esteem provided by the user to find out the sub

graphs.

The basic format of FSM is to module candidates (Sub-Graph candidates) with the

depth or breadth as former techniques and by implying it at the helping area as stated by the

user [4]. The Extension of the FSM is sighed as two important views that should be faced with

efficiency

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

2 http://www.webology.org

(I) Identifying the overall candidates repeatedly in the Sub-Graph beyond the

redundancy.

(II) Leave out the repeated check of the modules sub-graphs to avoid the time

complexity.

 Therefore, the safety should be measured to avoid the generation of copy or superfluous

candidates. Getting back to tally checking might require a redundant relationship of candidate

Sub-Graphs in the details of the data and FSM which is taken as the expansion of Frequent

Item set Mining (FIM) that advances with regards to ASM[4]. Various scientists mentioned

results for addressing the problems recognized with FSM and final coda property concludes

with item set which is matched up with candidate sub-graphs age. The glimpse of this paper

accompanies various best FSM related algorithms utilized by numerous strategies in

accordance with time complexity, memory complexity and some space related problems too.

The recurrent sub-graph mining can be categorized into two fundamental categories, namely

1. Mining with graph collections and finding out the recurrent sub-graphs.

2. Mining with one large graph and to find out the sub-graphs.

 Considering a graph datum set Gd = { G1, G2, G3,…. GN} I e..,. G1, G2, G3 where the

collection of different graphs jotted in the datum set, the lessened support count threshold σ (0

<σ≤ 1). Therefore the support of M,

Min Sup (M) = | δ(M) | / N

In which | δ(M) |, cardinality of δ(M) and N, overall amount of graph that presents the

graph dataset. Thus, M is recurrent, if Sup(M) ≥σ. The idea is simpler when the superset is

recurrent, therefore all the subsets are also recurrent.

PROPOSED TASK:

The proposed algorithmic task, a unique large datum and the model datum is shown in the

figure 1. Formerly the graph traversed from up to down and the vertices, nodes and edges are

identified to transform the graphical datum into textual transformation data. The transformed

transaction data is exclaimed with the invisible item alone in each and every row. The invisible

datum indicates that converted binary presentation and therefore te specified candidates are

joined using easy binary operation and the user as well provided with low support count

threshold value.

Figure 1: Single graph dataset

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

3 http://www.webology.org

Figure 2: Finding the edges

Therefore, the numbers of edges are 4 as shown in the figure 2. Simultaneously for each and

every node the edges are identified.

PROCEDURE Convert Graph To Text(

Graph G)

Input: Single Graph data G

Output: Textual Labels with number of

edges present in them

1. Load the single Graph dataset

2. Initially Scan the graph dataset to

find the number of levels

3. Detect the vertexes present in the

graph

4. Initialize edge =1 // to find the

number of edges

5. ∀ Vertex V in Graph G

 Discover the edges connected

with the v

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

4 http://www.webology.org

 Fetch the labels of the node

 Increment edge = edge + 1

 Store the labels and edge RES

6. End For

7. Return RES

Figure 3: Pseudo code to convert graph to text

The graph which is transformed into the textual data is figured out in the table 1 and

therefore the table that has specific items are identified and once after they are customized the

lessened support counts the invisible item represented which is processed below in the

following section.

Table 1: Converted graph to text

No

de

item

s

Edg

es

Nod

e

Items edges

N1 E, F,

G,

H, I

4 N11 D, B 1

N2 F, E,

A

2 N12 H, E,

C

2

N3 A, F,

B, C,

D

4 N13 C, H,

A, B,

D

4

N4 B, A 1 N14 A, C 1

N5 C, A 1 N15 B, C 1

N6 D, A 1 N16 D, C 1

N7 G,

C, B

2 N17 I, E, D 2

N8 B, G,

A, C,

D

4 N18 D, I,

A, B,

C

4

N9 A, B 1 N19 A, D 1

N1

0

C, B 1 N20 B, D 1

The ultimate method to figure out the specific item is shown in the below figure 4 and

then the pseudo code has been showed ,

Figure 4: Pseudo code to find the distinct items

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

5 http://www.webology.org

The support count is provided by the user is 4 and the distinct items are found to be {A,

B , C, D, E, F, G, H, I, } where the item count of F, G, H, I are found to be 3 and as it is lower

than the user defined support, those items are pruned. The pruned transactional data

representation is shown in the following table 2 and from this table the missing items are

discovered.

Table 2: Pruned transactional data

Node items Node Items

N1 E N11 D, B

N2 E, A N12 E, C

N3 A, B, C, D N13 C, A, B,

D

N4 B, A N14 A, C

N5 C, A N15 B, C

N6 D, A N16 D, C

N7 C, B N17 E, D

N8 B, A, C, D N18 D, A, B, C

N9 A, B N19 A, D

N10 C, B N20 B, D

Thus, the items are invisible in each node are identified and represented as shown in

the following table 3.

Table 3: Missing item transactional data

NOD

E

ITEMS NOD

E

ITEMS

N1 A,B,C,

D

N11 A,C,E

N2 B,C,D N12 A,B,D

N3 E N13 E

N4 C,D,E N14 B,D,E

N5 B,D,E N15 A,D,E

N6 B,C,E N16 A,B,E

N7 A,D,E N17 A,B,C

N8 E N18 E

N9 C,D,E N19 B,C,E

N10 A,D,E N20 A, C,E

The table 3 is represented and when the item is presented in the node then it will be

marked as one and elsewhere marked as zero. Therefore, the pseudo code to perform this task

is proven in the figure 5.

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

6 http://www.webology.org

PROCEDURE Binary Value(Missing Item

M)

Input: Missing Item M

Output: Bit vector representation of data

1. Load missing item Data set M and

scan it.

2. ∀ Row Ro∈M begin

3. ∀ Item It ∈Ro begin

4. If [It present in Ro] begin

5. Mark as “1” in out

6. Else

7. Mark as “0” in out

8. Close IF

9. Close For

10. Close For

11. Return out

Figure 5: Pseudo code to represent the missing item dataset in binary format

The recurrent graphs are identified as computing the probable candidate and thus it start

from the 2 item set value A and B.

A = 10000010011100111001

B = 11001100000101011010 |OR

AB =11 0 0 1 1 1 0 0 1 1 1 0 1 1 1 1 0 1 1

Then , count the number of zeroes and from the result {AB}=11001110011101111011,

that the number of zero is 6 and the user defined support provided is 4. The count of AB is

greater than the lessened support and therefore the graph is identified to be frequent. Then, the

later level 3-itemset is found using this {AB} | {C}

AB = 1 1 0 0 1 1 1 0 0 1 1 1 0 1 1 1 1 0 1 1

 C = 1 1 0 1 1 1 0 0 1 0 1 0 0 0 0 0 1 0 1 1 | OR

ABC = 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1

The number of zeroes is identified to be 3 and it is smaller in amount than the minimum

support count and henceforth it is irrecurrent and the later level 4-itemset gets ignored. The

final recurrent sub-graph is shown in the following table 5.

Table 5: Final result

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

7 http://www.webology.org

PROPOSED ALGORITHM

ALGORITHM FSMM

Input: Graph Database G , min_sup

Output: Frequent Items

1. Load the graph dataset

2. Convert graph to test Text

Table

3. Load the transaction table

Text table

4. Find the missing Value Tm

5. Bin=Binary Value(dataset

Tm)

6. Find the level wise calculation

7. Count the number of zeroes

8. If [Count >= min_sup]

9. Store the item set in RES

10. Calculate the next level item

set

11. Else

12. Prune the Item set

13. Return RES

Figure 6: Pseudo code of the proposed algorithm FSMM

EXPERIMENTAL EVALUATION

The proposed RSDI algorithm gets executed on the system comprising of 2.66 GHz I7

processor machine and a 4 GB memory running on Microsoft 10 ultimate operating system.

Therefore, the algorithm is written in java based SPMF data mining toolkit. The RSDI

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

8 http://www.webology.org

algorithm compared with the existing algorithms like FSG [1], GSPAN [2], GASTON [3] and

the results showcased proves the efficient working of the RSDI algorithm.

Kuramochi and Karypis [1] designed the FSG algorithms for mining all recurrent sub-

graphs from graph datasets, with a level-wise approach as on the Apriori concepts and thus the

algorithm had been the first one compared with the proposed RSDI.

The writer Yan and Han [2] designed GSPAN, that employed depth- first search,

framed on a pattern growth principle same as the FP-growth algorithm and herewith the

candidate has generated but it includes a heavy memory.

The writer Nijssen et al. Designed an efficient recurrent sub-graph mining tool, called

Gaston, it identifies the recurrent substructure that are given in a number of phases of

developing complexity [3].

The synthetic datum generator initially created a set of candidate graphs (the total

number is controlled by L) and user specified size (I). Thus, the parameters produced in the

synthetic graph generator are given in the table 6.

Table 6: Parameter used in synthetic dataset

Parameters Description of

parameter

D Total number of graph

L Total number of

probable frequent sub-

graph present

T Number of Edges

V Label count

I Edge size

E Edge label count

The datum set generated by the following table and three datum sets are generated and used for

experimental comparison are in respect to the runtime and memory consumption.

Table 7: Dataset used

Dataset

generated

Numbe

r of

Sequen

ces

Avg.

edge

s

Potent

ial

freq

patter

ns

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

9 http://www.webology.org

D15kT30L

200I11V4E

4

10000 35 250

D25kT40L

350I16V4E

4

20000 45 375

D120kT50

L500I20V4

E4

100000 55 550

The formulated RSDI algorithm and some other prolonging algorithms are executed by the

synthetic datum sets as given in the table 7. Thus the results formed after the existence in

respect to the due time consumption is marked in the table 8.

Table 8: Run time comparison on D10kT30L200I11V4E4 (Small) dataset

RUNTIME (m SEC)

Dataset - D15kT30L200I11V4E4

Algor

ithm

User defined Min_Sup

values

10 10

0

100

0

200

0

250

0

FSG 1244 94

7

831 787 659

GSP

AN

1219 89

4

726 678 646

GAS

TON

1079 85

9

717 626 538

FSM

M

978 72

2

665 556 437

Thus, the experimental value brought out in the table 8 clearly defines that the proposed RSDI

algorithms work on with small synthetic datum set. The GATSON algorithm relatively mirrors

the performance of RSDI when a bigger support count is given but in case of the other two

algorithms auctioned worsen and has taken a longer time to exit.

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

10 http://www.webology.org

Figure 7: Graph related to runtime comparison

Table 9: Memory consumption comparison

The next comparison, forwarded with memory footprint and therefore the following

table 9 proves the comparison of memory consumption.

The table 9 keenly figures out that the proposed RSDI algorithm which outscores the

other three algorithms with a better margin in respect to the memory consumption. Therefore

the minimum support value is diagnosed below 5, FSG becomes insufficient due to memory

error and then the minimum support value lessened alive 3000 almost all the algorithms acted

simultaneously.

Figure 8: Graph related to memory consumption

CONCLUSION

MEMORY USAGE (MB)

Dataset -

D15kT30L200I11V4E4

Algo

rith

m

User defined Min_Sup

value

10 10

0

10

00

20

00

250

0

FSG 32

3

10

9

78 58 35

GSP

AN

27

6

93 66` 42 29

GAS

TON

22

4

79 57 37 27

FSM

M

16

8

66 45 29 21

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

11 http://www.webology.org

The proposed algorithm RSDI proved that this papers glimpse and its experimental results are

innovative keenly band therefore the RSDI overwhelmed the other algorithms by large amount

of force in accordance with the runtime and memory consumption. This proposed algorithm

keenly saves a huge amount of runtime and memory when it is executed on a large graph that

datum sets are proved as asset to the research area.

REFERENCES

1. M. Kuramochi and G. Karypis. Frequent subgraph discovery. In Proc. International

Conference on Data Mining’01, 2001.

2. Yan, X. and Han, J.W. 2002. gSpan: Graph-based Substructure pattern mining, In

Proceedings of International Conference on Data Mining, 721–724.

3. S. Nijssen and J.N. Kok. The gaston tool for frequent subgraph mining. Electronic Notes

in Theoretical Computer Science, 127:77-87, 2005.

4. Chen, M.S., Han,J.andYu,P.S. 1996 Data mining – An overview from database

perspective, IEEE Transaction on knowledge and data engineering 8 , 866-883

5. http://cygnus.uta.edu/subdue/databases/index.html

6. http://citeseer.ist.psu.edu/oai.html

7. http://vlsicad.cs.ucla.edu/cheese/ispd98.html

http://cygnus.uta.edu/subdue/databases/index.html
http://citeseer.ist.psu.edu/oai.html
http://vlsicad.cs.ucla.edu/cheese/ispd98.html

